

Zero-Emission Hydrogen Locomotive Webinar

December 16th, 2022 - 9 AM - 10 AM PST

Webinar Logistics

Due to the large number of attendees, all participants will be muted for the duration of the webinar.

This webinar will be recorded and the recording will be on Valley Vision's website next week.

Use the Q/A function to ask a question at any time. If we don't have time for all questions, they will be addressed in the follow up email.

2

3

4

Welcome & Webinar Logistics

Agenda

- History of Locomotives & Sierra Northern Railway's Local Operations
- Hydrogen safety & technology
- 5
- Operations, Life Cycle, & Data
- 6
- Public Health Impacts & Improvements

Audience Q/A

- Introduce Project and Project Team

solutions that transform

GTI Energy – Sierra Northern H2 Locomotive

Bart Sowa

R&D Manager, Mobility bsowa@gti.energy

December 2022

Need and funding background

- H2RAM Solicitation (Hydrogen in Rail and Marine Applications at Ports) issued by California Energy Commission (CEC)
- 4 projects awarded in 2021
- Funded by CEC Gas R&D Program (gas ratepayers)
- Developing science or technology, the benefits of which accrues to California citizens and are not adequately addressed by competitive or regulated entities
- Other co-funders
- Target hard to decarbonize applications, improve air quality

SACRAMENTO METROPOLITAN

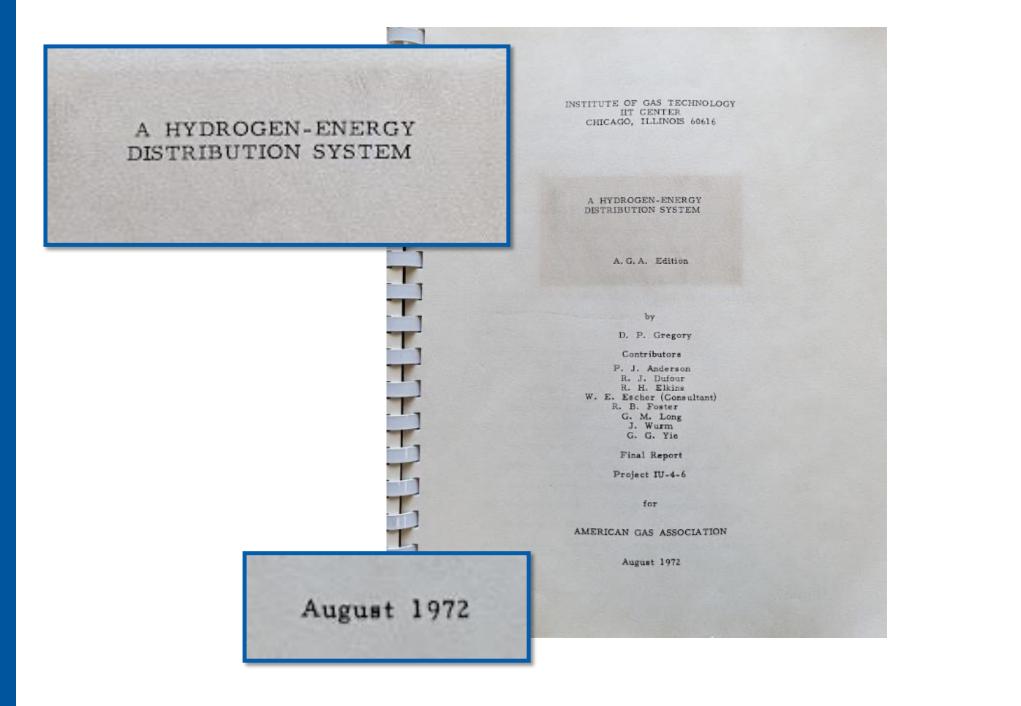
Project Overview

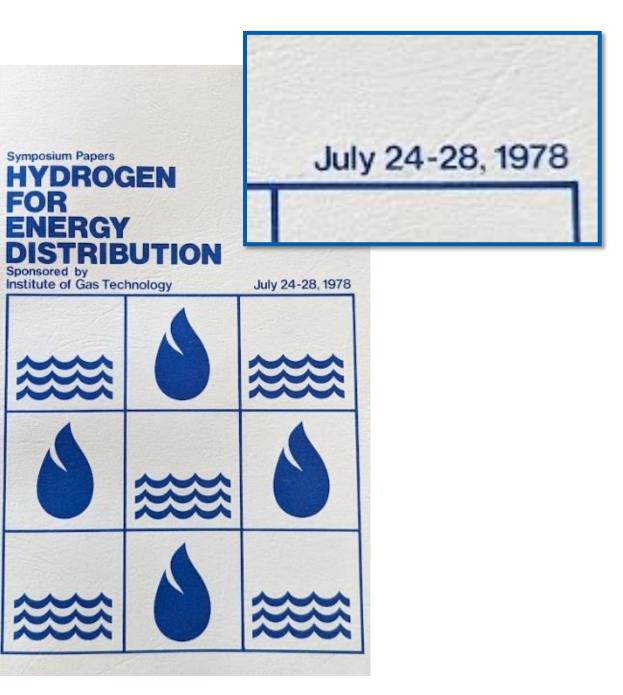
- \$4M CEC funding, \$6M total project cost
- Awarded in 2021, completion in 2025
- 8 experienced project partners
- Start of testing and operation next year

FRONTIER energy

We develop, scale and deploy solutions in the transition to low-carbon, low-cost energy systems

We work collaboratively to address critical energy challenges impacting gases, liquids, efficiency and infrastructure





Hydrogen as energy carrier is not a new idea

Hydrogen in mobility : hands-on

- Endurance
- Weight
- Non-wires
- Refueling time

solutions that transform

GTI Energy develops innovative solutions that transform lives, economies, and the environment

Zero Emission Hydrogen **Locomotive Webinar**

Sierra Northern Railway – SERA – ALL Rights Reserved

The path forward to the future of zero-emission switching locomotives.

December 2022

What is a Switcher Locomotive?

Definition of Class I, II & III Railroads

Railroads are classified based on their annual operating revenues.

- Class I \$447+/- Million or more. ullet
- Class II Less than \$447+/- Million to \$35+/- Million
- Class III Less than \$35+/- Million

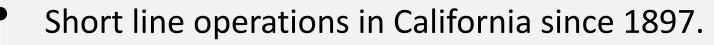
Class I Freight Railroads In California

- **BNSF** •
- **Union Pacific Railroad Company**

Class II Railroads

These railroads are also known as a "regional railroads."

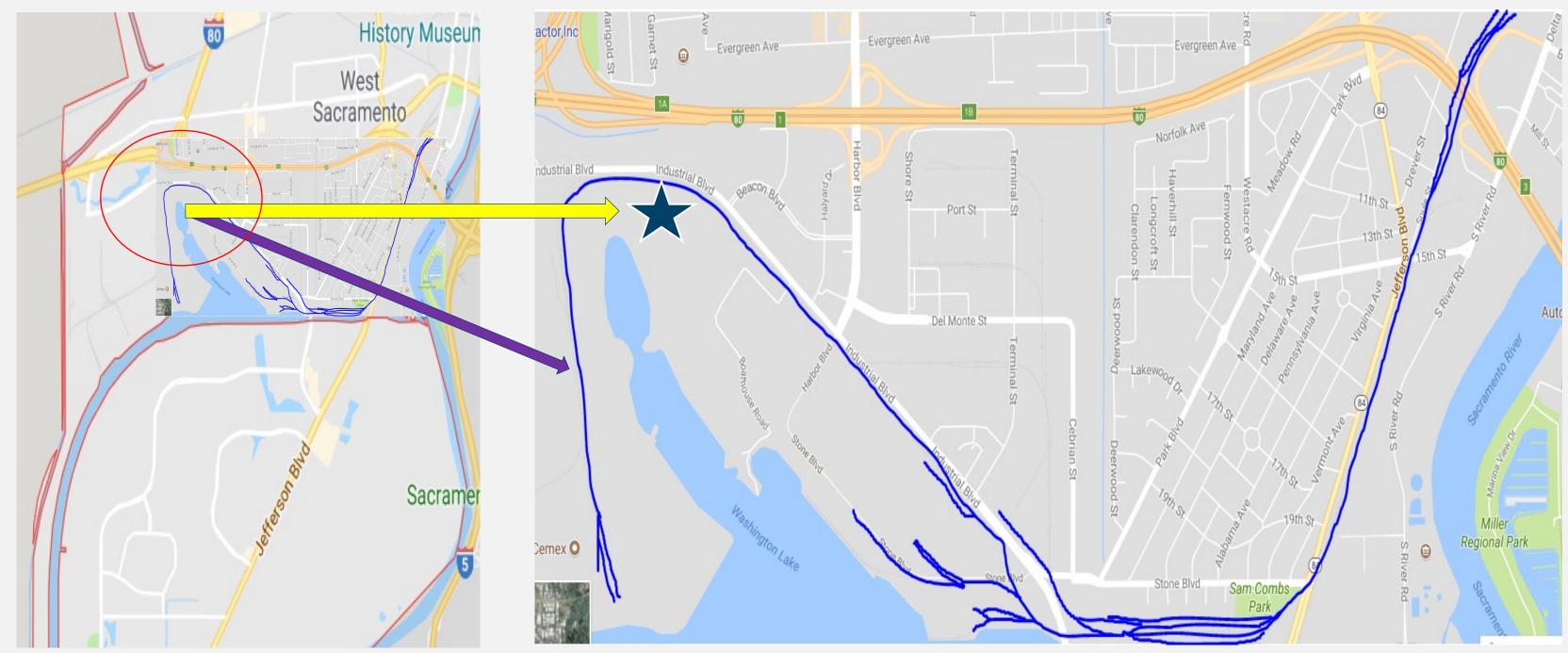
Class III Railroads


- These railroads are also known as a "short line railroads."
- In California there are 24+/- Class III Railroads including ۲ **SERA**

- 73 feet long
- 15 feet high
- Weighs 480,000 pounds +/-Holds 5,000 gallons of diesel fuel

- 62 feet long
- 15.5 feet high Weighs 275,000 pounds +/-
- Holds 0 gallons of diesel fuel

- First miles/last miles for clients connected to national freight network BNSF and the Union Pacific Railroad (UP).
- Sierra Northern Railway (SNR) operates and owns 41 switcher locomotives.
- Sierra Northern Railway was formed in August 2003 through the merger of two Northern California shortline railroads: the Sierra Railroad Company and the Yolo Shortline Railroad.
- Sierra Northern currently operates Sierra Northern Railway (SNR) operates 160+ miles of track in California, through the heart of a number of California's prime industrial areas, serving a wide variety of customers, and interchanging with both the Burlington Northern Santa Fe Railway and the Union Pacific Railroad. Sierra Northern's employees strive to help its customers with all their railroad transportation needs.
- Sierra Northern Railway's alpha code (reporting mark) is SERA.


SERA Local Operations

SERA West Sacramento Operations

G GTI ENERGY

SIERRA

Sierra Northern Railway serves rail customers in the City and Port of West Sacramento. Sierra is building and will test the zero-emission switching locomotive in it's Railyard in the Port of West Sacramento and on the rail lines it operates on

Sierra Northern Railway Hydrogen Switching Locomotive Project

The path forward to the future of zero-emission switching locomotives.

Ken Beard

CEO and President kbeard@sierrarailroad.com

Michael Faust

Sierra Northern Railway Project Consultant & President, Velocity Strategies mfaust@mefcllc.com

DECEMBER 2022

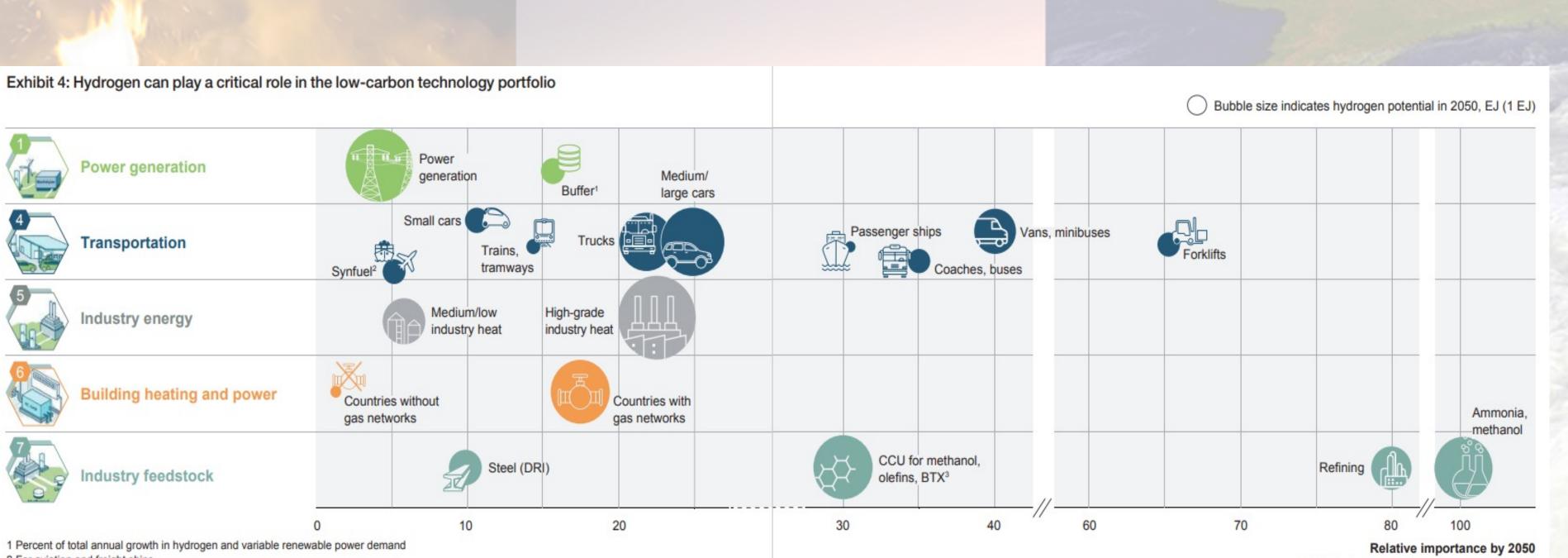
1/12/23

Hydrogen basics and safety

Zero-Emission Hydrogen Locomotive Webinar

Jennifer Hamilton, Technical Director

H2FCP Members


Hydrogen in California

Energy & Transportation Systems are Transitioning Globally

Hydrogen has a Significant Role in Global Decarbonization

2 For aviation and freight ships

3 Percent of total methanol, olefin, BTX production using olefins and captured carbon

SOURCE: Hydrogen Council

https://hydrogencouncil.com/en/

Market share potential in segment, percent

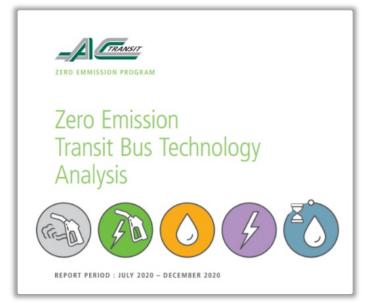
Hydrogen Fuel Cell Vehicles – Light-Duty

Honda Clarity

Hyundai NEXO

Toyota Mirai

Toyota Mirai


Riversimple

Hydrogen Fuel Cell Vehicles – Transit Buses


California Transit Agencies with fuel cell electric buses on the road and initial pipeline

- AC Transit (East Bay)
- Eastern Contra Costa Transit Authority (East Bay)
- North County Transit (San Diego)
- OCTA (Orange County)
- Riverside Transit Agency
- SunLine Transit (Coachella Valley)
- UC Irvine

Alameda-Contra Costa Transit District	Oakland & Emeryville	Large
Butte Regional Transit	Chico	Small
City of Santa Clarita	Santa Clarita	Large
Eastern Contra Costa Transit Authority	Antioch	Small
Foothill Transit	West Covina	Large
Fresno Area Express	Fresno	Large
Gold Coast Transit District	Oxnard	Small
Golden Empire Transit District	Bakersfield	Large
Humboldt Transit Authority	Eureka	Small
Lake Transit Authority	Lower Lake	Small
Livermore/Amador Valley Transit Authority	Livermore	Small
Long Beach Transit	Long Beach	Large
Montebello Bus Lines	Montebello	Large
Monterey-Salinas Transit District	Monterey	Small
North County Transit District	Oceanside	Large
Orange County Transportation Authority	Orange	Large
Omnitrans	San Bernardino	Large
Riverside Transit Agency	Riverside	Large
San Diego Metropolitan Transit System	San Diego	Large
San Joaquin Regional Transit District	Stockton	Large
San Mateo County Transit District	San Carlos	Large
Sunline Transit Agency	Thousand Palms	Small

Hydrogen Fuel Cell Vehicles – Trucks & more

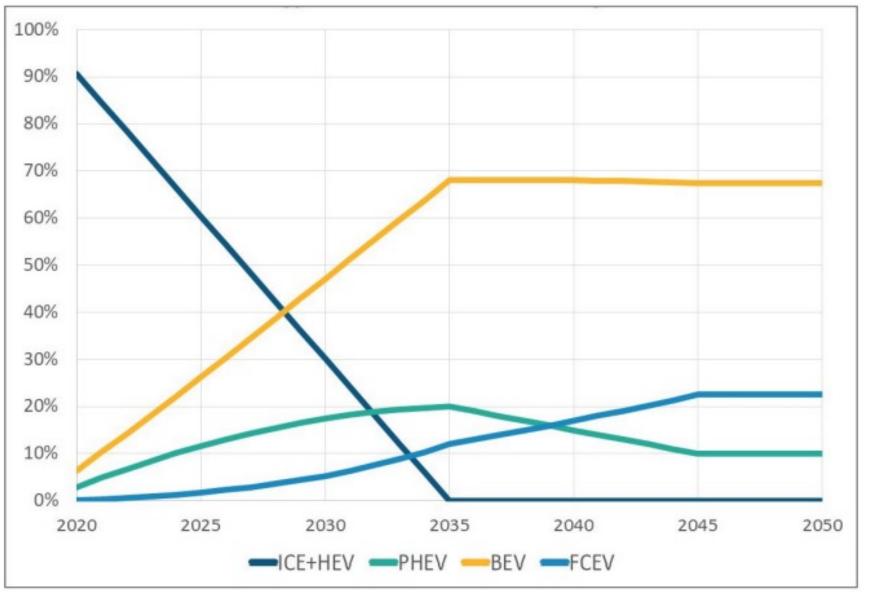
Many more HD FCVs...

- BAE
- Ballard
- Bosch
- Cellcentric
- Cummins
- Daimler Truck
- Hino
- Hyundai
- Hyzon
- International/GM
- Loop Energy
- Kenworth
- Nikola
- Quantron
- Siemens
- Toyota
- Volvo

California Environmental Goals

Legislation and Executive Orders are driving the state towards 100% zero-emission transition

	Climate	 2045 – 100% zero carbon electricity (SB 2045 – Carbon neutral economy (EO B-
	Air Quality	 2031 – 80% reduction in smog-forming I
	Zero Emission Vehicles (ZEVs)	 ZEV regulation – increasing ZEV sales r Innovative Clean Transit – 100% new bu of all operating buses ZEV by 2040 Advanced Clean Trucks – increasing sal manufacturers starting 2024, and 100% 2025 – 1.5 million ZEVs (EO B-16-12) 2030 – 5 million ZEVs (EO B-48-18) 2035 – 100% in-state passenger vehicle 2045 – 100% in-state M-HD vehicle sale
	ZEV infrastructure and fuels	 2025 – 200 hydrogen stations and 250,0 Low Carbon Fuel Standard – sets carbo producers producing and selling credits

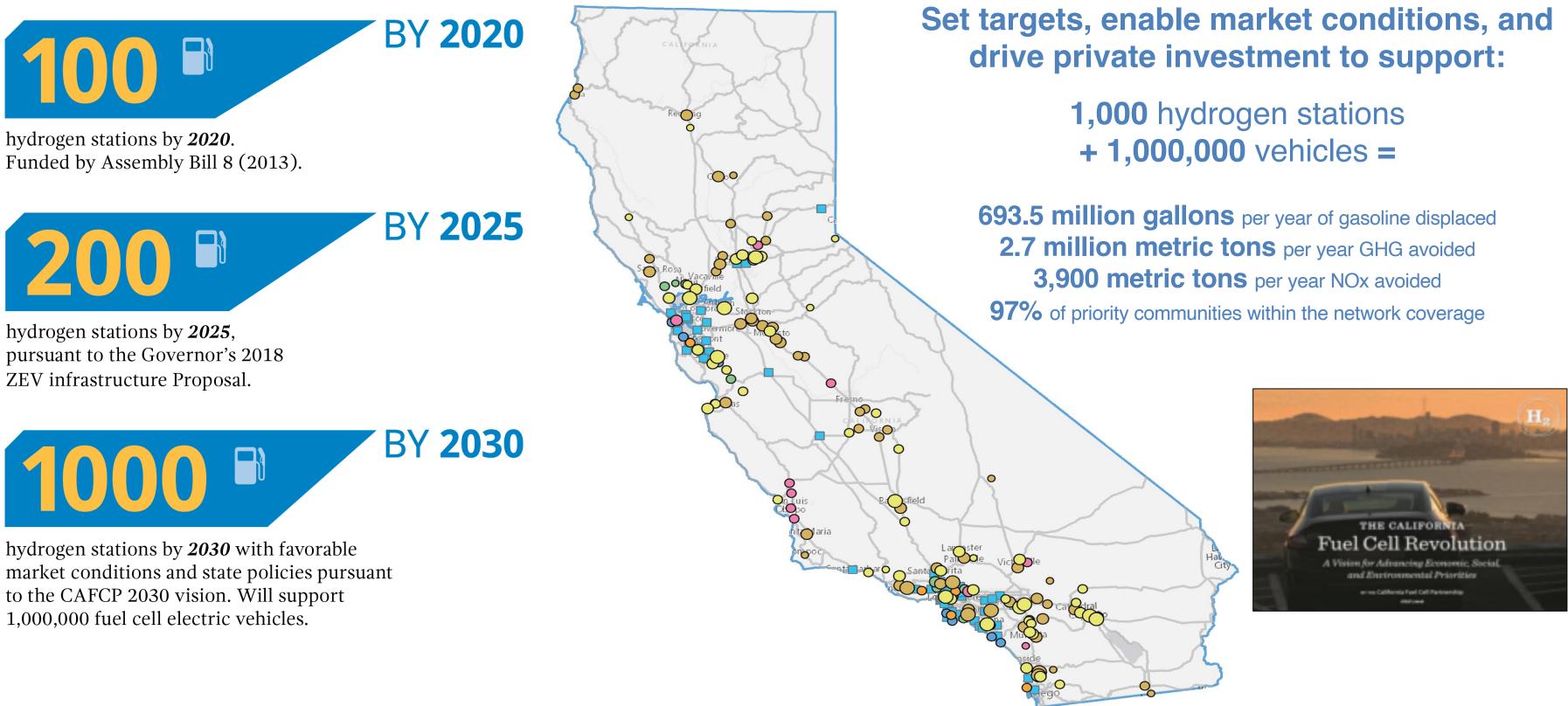


- 3 100)
- -55-18)
- Nox
- requirement for LD automakers us purchases ZEV by 2029, and 100%
- ales requirement for MHD ZEV sales by 2045
- e sales are ZEV (EO-N-79-20) es are ZEV (EO-N-79-20)
- 000 chargers (EO B-48-18) on intensity standard for fuels, with fuel around the standards

California's environmental challenge – and ZEV actions

- 1990 zero emission vehicle regulation (ZE) to curb tailpipe emission
- Requires automakers sell ZEVs in Califorr and other states
- Complimentary nature of BEVs & FCEVs
 - Hydrogen and electricity system enables larger decarbonized energy transition in all sectors
- Provides consumer choice

Figure 13 – Light-Duty Vehicle Sales Fractions by Technology Type

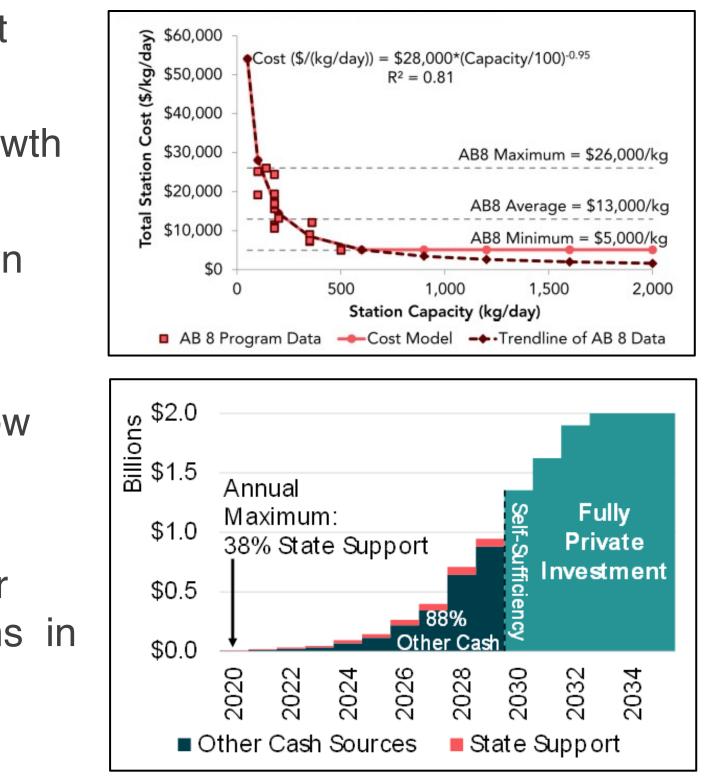

Both ZEV technologies needed to reach environmental goals

Source: CARB's Mobile Source Strategy

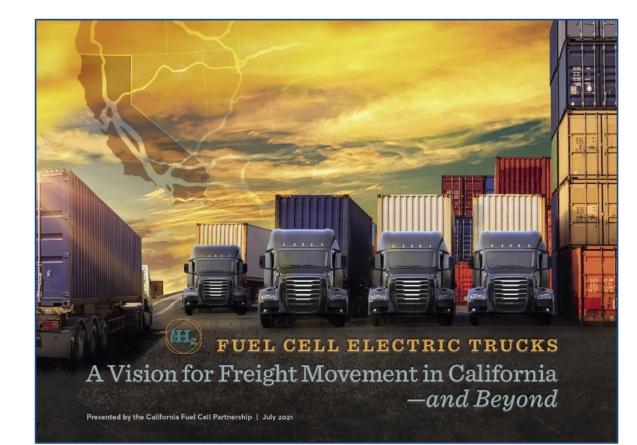
Envisioning the Transition : CA Fuel Cell Revolution

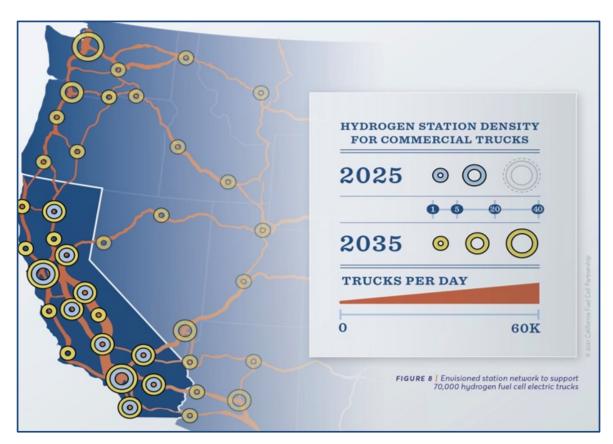
Achieving the Transition: CA Self-sufficiency Study

Self-Sufficiency Achieved by:



With State Support up to:



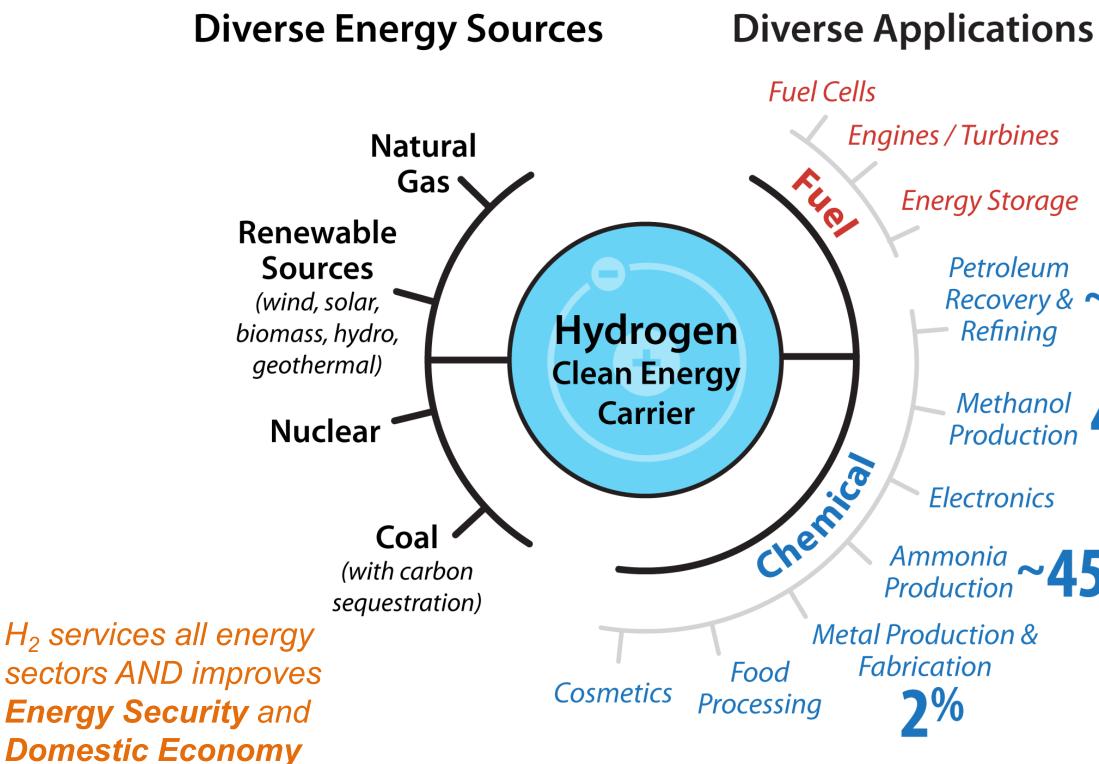

- Self-sufficiency is possible with State support
- Industry supports the majority of network growth
- California's network growth rate drives its own economies of scale
- Stations and FCEV deployments need to grow together to gain full benefit
- State support offers benefits to the consumer and may be sufficient to accelerate reductions in price at the pump

Envisioning the Transition: Fuel Cell Truck Vision

-Fuel Cell Electric Truck Vision— Enable market conditions to support: 200 hydrogen stations + 70,000 trucks =

541.8 million gallons per year of diesel displaced 6.7 million metric tons per year GHG avoided 18,100 metric tons per year NOx avoided

Hydrogen Energy Systems


ARCHES is California's public-private hydrogen (H2) hub consortium to accelerate the development and deployment of clean, renewable H₂ projects and infrastructure. Clean H₂ can supplement renewable energy sources to reduce greenhouse gas emissions and advance a zero-carbon economy. The US Department of Energy will award \$8 billion to up to 10 regional H2 hubs to build self-sustaining H2 economies of producers, infrastructure, and users. In partnership with the Governor's Office of Business and Economic Development (GO-Biz), ARCHES unites key public and private stakeholders to build the framework for a California renewable, clean H₂ hub.

Hydrogen properties and safety

Hydrogen – A Clean, Flexible Energy Carrier

YDROGEN **Emergency Response** Training Resources

Source: DOE, NREL, Hydrogen and Fuel Cell Program

Engines / Turbines

Energy Storage

Petroleum Recovery & $\sim 47\%$ Refining

Methanol Production

Electronics

Ammonia **~45%** Production

Industry has used H₂ safely for over eight decades!

Why Hydrogen Fuel?

- Most abundant element in the universe
- Excellent energy carrier
- Ultra-low/Zero emissions
- Economically competitive
- Safe and secure
 - More than 80 years of industrial use
 - Can be used as safely as gasoline
 - Domestically produced from a variety of sources

HYDROGEN Emergency Response Training Resources

H2 fuel dispenser (Photo :California Fuel Cell Partnership)

1/12/23

The use of hydrogen is not new; private industry has used it safely for many decades. Nine million tons of hydrogen are safely produced and used in the United States every year; 56 billion kg/yr are produced globally. For example, H_2 is used for:

- Petroleum refining
- Glass purification
- Aerospace applications
- Fertilizers
- Annealing and heat treating metals
- Pharmaceutical products

The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. | Photo credit Air Products and Chemicals hydrogen production facilities.

- Petrochemical manufacturing
- Semiconductor industry
- Hydrogenation of unsaturated fatty acids in vegetable oil
- Welding
- Coolant in power generators

How is Hydrogen Stored and Transported?

Well-established industrial supply system

Gaseous (GH₂)

- Thick walled metallic (Type I) or composite reinforced cylinders (Type II or III)
- ▶ 2,400-8,000 psi
 - No liquid phase in compressed gas H₂ storage
 - Compression does not liquefy

HYDROGEN Emergency Response Training Resources

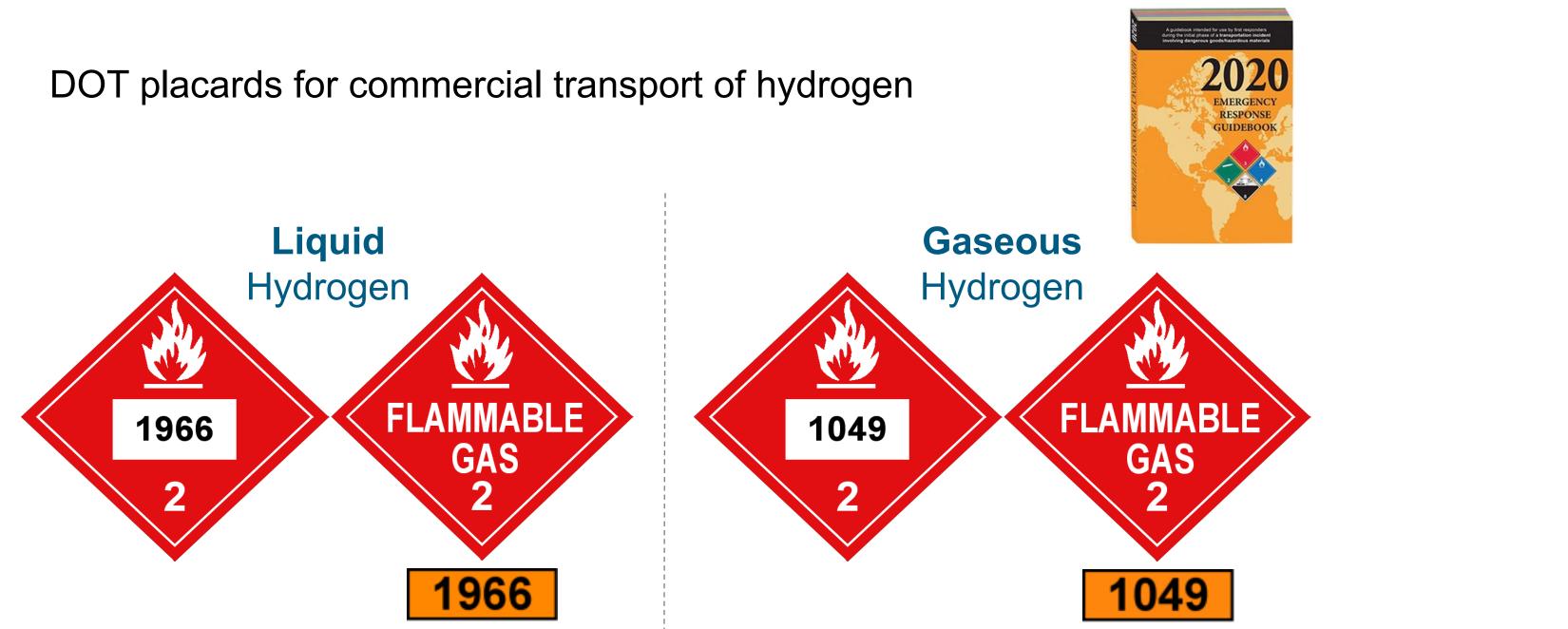
1/12/23 3

How is Hydrogen Stored and Transported?

Well-established industrial supply system

Liquid (LH₂)

- Cryogenic: -423°F (-253°C)
- Double walled, vacuum insulated tanks with burst disks, vents, and pressure relief devices
- Low pressure 50 psi



HYDROGEN Emergency Response Training Resources

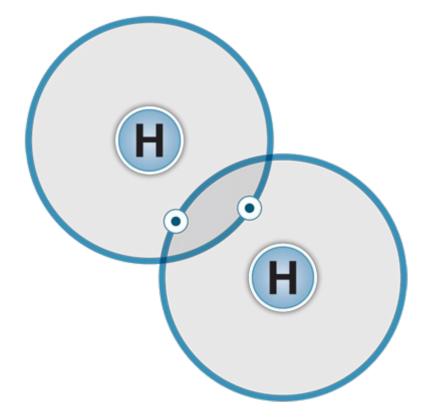
Transporting Hydrogen Today

YDROGEN **Emergency Response** Training Resources

Hydrogen Properties and Behavior

Gas at ambient conditions

- Rises and disperses rapidly (14x lighter than air)
- Flammable range 4-75% in air
- **Liquid** at -423°F (-253°C) a cryogen
 - LH₂ stored at 50 psi in vacuum insulated tanks
 - No liquid phase in compressed gas H₂ storage


Energy content comparison :

- 1 kg of hydrogen ~ 1 gallon gasoline
- 33.3 kWh/kg hydrogen vs. 32.8 kWh/gal gasoline

rainina Resources

Molecular Hydrogen Model: 2 protons (H+) sharing 2 electrons (e-)

Hydrogen Properties: A Comparison

	Hydrogen	Natural Gas	Gasoline		
Color	No	No	Yes		
Toxicity	None	Some	High		
Odor	Odorless	Mercaptan	Yes		
Buoyancy Relative to Air	14X Lighter	2X Lighter	3.75X Heavier		
Energy by Weight	2.8X > Gasoline	~1.2X > Gasoline	43 MJ/kg		
Energy by Volume	4X < Gasoline	1.5X < Gasoline	120 MJ/gallon		

Source: California Fuel Cell Partnership

HYDROGEN Emergency Response Training Resources

General Station Safety Systems

- Pressure relief systems
 - **Burst disks**
 - Pressure relief valves/devices (PRV/PRD) •
 - Safety vents •
- Fire and leak detection systems
 - Remote system monitoring •
 - Hydrogen gas detectors (dispenser) •
 - UV/IR flame detectors •
 - Fueling line leak check on nozzle connect •

ASME steel and composite stationary storage tubes

BOGEN

General Station Safety Systems

- Design elements
 - (HAZOP, FMEA, etc.)
 - Hydrogen Risk Assessment Model (HyRAM) available on h2tools.org
 - Hydrogen compatible materials
 - Prevents hydrogen embrittlement
 - Siting to established regulations
 - IFC and NFPA 2
- Other systems
 - Emergency stops
 - Dispenser hose break-away devices
 - Impact sensors at dispenser
 - Leak detection with automatic shut-off
 - Redundant isolation of systems

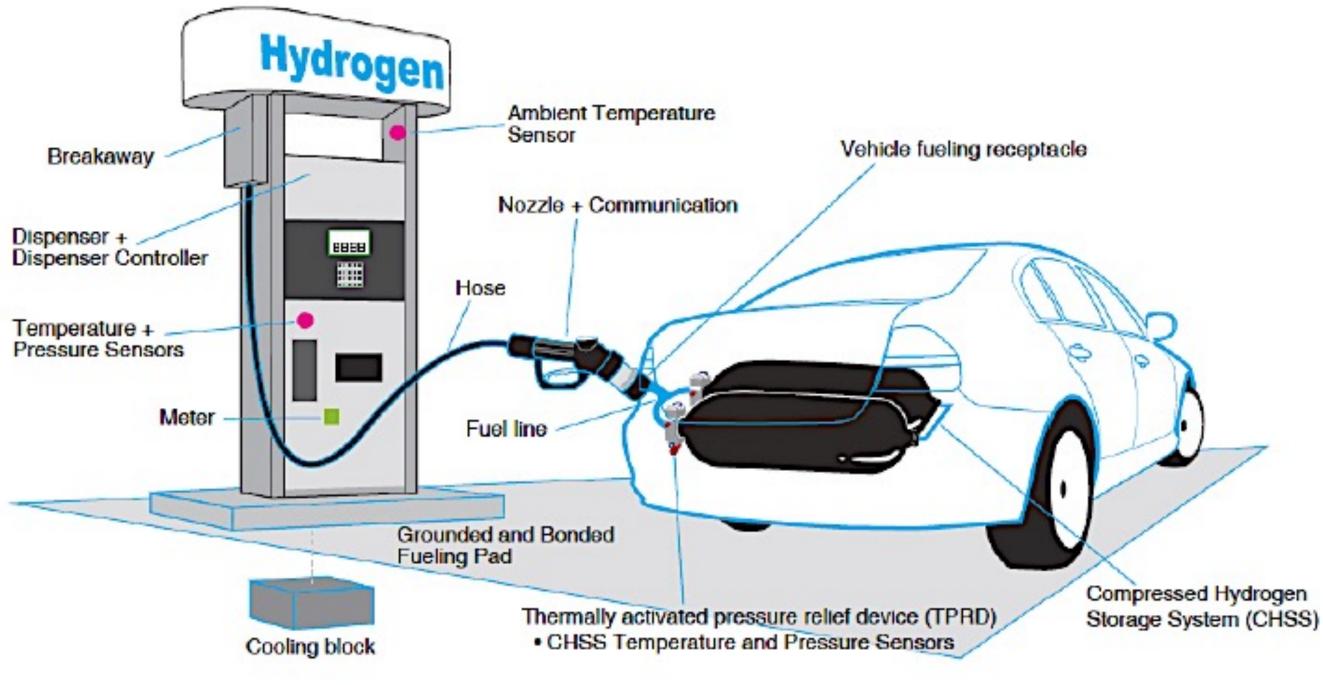
Emergency Response Fraining Resources

Engineering safety margins and risk analysis

Typical Station Configurations


- Hydrogen can be produced at a central plant and delivered or made on site
- Delivered hydrogen
 - Liquid refill bulk storage tank
 - Gaseous tube trailer swap or refill
 - Pipeline
- On-site production
 - Natural gas (steam methane reformer-SMR)
 - Electrolysis of water
- Final product = gaseous hydrogen dispensing

HYDROGEN Emergency Response Training Resources


North American-Based Codes & Standards

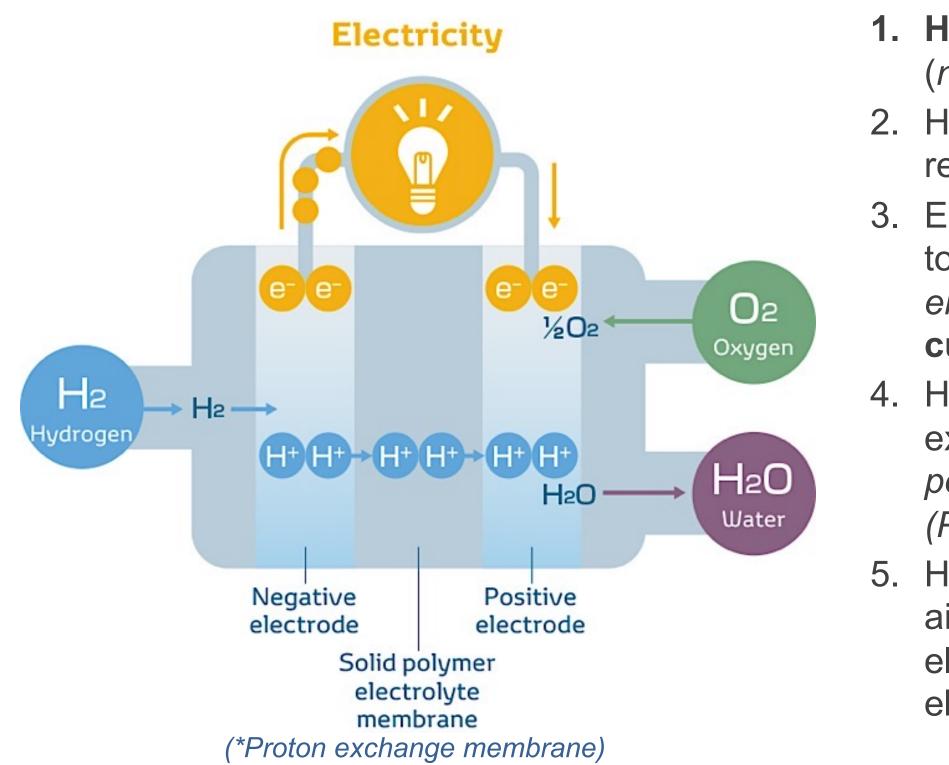
Examples of Standards Impacting Refueling Infrastructure

Hydrogen Fueling Diagram

© ISO 2015

High-pressure Hydrogen Cylinder Testing

- In accordance with latest proposed hydrogen vehicle fuel storage system standards (SAE J2579, CSA HGV2, GTR 13)
- Tests conducted as part of the design qualification testing for new cylinders
- ► Vent only, no rupture



Emergency Response Training Resources

How a PEM* Hydrogen Fuel Cell Works:

HYDROGEN Emergency Response Training Resources Source: http://www.toyota-global.com/

1. Hydrogen (H_2) to anode side (*negative electrode*) 2. H_2 molecules react at anode, release electrons (e-) 3. Electrons travel external circuit toward cathode (positive *electrode*), as **electrical** current, to do work 4. Hydrogen ions (**H+**, *protons*) exchange through solid polymer electrolyte membrane (PEM) to cathode Hydrogen ions react with airborne **oxygen** (O_2) and electrons at the cathode electrode to form water

Resources

- Hydrogen Fuel Cell Partnership: <u>https://h2fcp.org</u>
 - By the numbers
 - FAQ's
 - Reports
 - Events
 - Station Map
- Center for Hydrogen Safety: https://www.aiche.org/chs
 - Hydrogen Tools (h2tools.org)
 - Emergency Responder Training resource
 - Lessons Learned
 - Best Practices
 - Hydrogen Safety Panel

We're creating transformative change for a brighter, healthier future.

Join the revolution.

Jennifer Hamilton jhamilton@h2fcp.org h2fcp.org

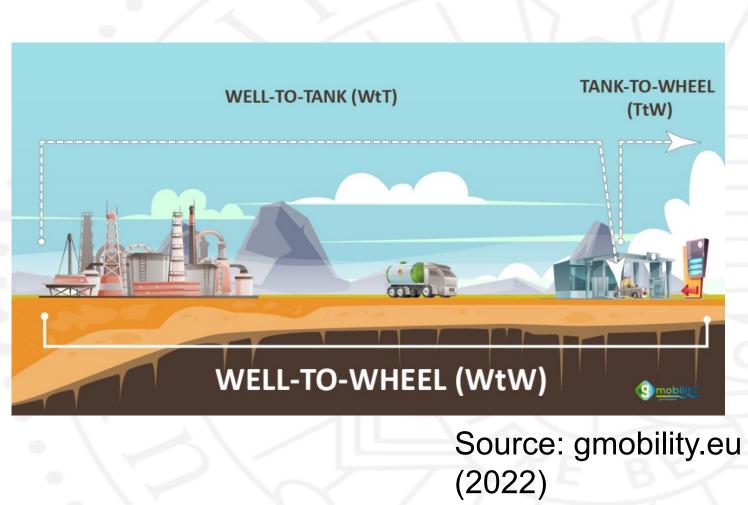
UC Riverside Life Cycle Analysis (LCA)

Valley Vision Webinar

December 16, 2022

Presented By:

Georgios Karavalakis Adjunct Professor & Research Engineer


gkaraval@cert.ucr.edu www.cert.ucr.edu (951) 781-5786

University of California, Riverside Center for Environmental Research and Technology (CE-CERT)

www.cert.ucr.edu

Life Cycle Assessment (LCA)

- Life cycle assessment is a technique for assessing the environmental aspects associated with a product over its life cycle.
- The final full life cycle emissions and energy consumption information, i.e., Well-to-Wheels (WtW), is obtained by summing up the two parts:
 - The Well-to-Tank section accounts for all the fuel production steps such as resource extraction, fuel production, transport, storage, distribution, and marketing.
 - The Tank-to-Wheels part takes into account the emissions during the vehicle operation.
 - A life cycle assessment for H2/fuel cell switcher trains and more broadly for these types of locomotives in CA will be conducted in this project.

UCRIVERSITY OF CALIFORNIA

California Analysis Model (CA-GREET)

- The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is widely used in LCA studies, especially in the United States.
- The CA-GREET model is a modified version of the GREET model consisting of California specific assumptions. We use CA-GREET 3.0, the latest CA-GREET model in this project.
 - Well-to-Tank: focusing on raw material extraction, hydrogen production and distribution
 - Tank-to-Wheels: using locomotive activity data to collect operation and mileage information

٨	В	С	D	E	F	G	Н			К		М	N
A Hydrogen Production Pat								Coke Oven Gas Eth	anol and Me	thanol	L	IVI	IN
1) Scenario Control and Key					Home	Input		esults					
,,							Tran	sportation Fuel Application					
			Central Plant: C				Central Plant:	Central Plant: High			5.6.5	Refueling	Refuel
	Central Plant: NG		Nuclear (water	Electrolysis (HTGR)	Central Plant: (Coal	Eentral Plant: Biomass	Intergrated Fermentation	Temperature Electrolysis		Central Plant:	Refueling Station: NG	Station:	Stati
Hydrogen Production Facility Share of H2 Production: G.H2	100.0%	Solar Energy 0.0%	cracking) 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Coke oven gas 0.0%	Pet Coke 0.0%	Station. NG 0.0%	0.0%	Et
Share of H2 Production: L.H2	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0. 0.
:O2 Sequestration in Central F													-
	G.H2	L.H2											
IG-to-H2 Plant	0.0%	0.0%											
Coal-to-H2 Plant	0.0%	0.0%											
Biomass-to-H2 Plant	0.0%	0.0%											
Pet Coke-to-H2 Plant	0.0%			г									
Conversion factor for HTGR (M	Wh of electri	city or H2 per g	gram of U-235)		8.7								
conversion factor for High Ten	-	-			f U-235)		14.2	U	ser l	nterf	ace	of	
Selection of Method for Estimat	-							_				_	_
Feedstock	NG	Coal	Biomass	Pet Coke					A-GF	DEE.	Tm	2 2 2	
Central Plant G.H2	1	1	1	1		ement method			A-Gr			JUE	
Refueling Station G.H2	1				2 Btu-base								
Central Plant L.H2 Refueling Station L.H2	1	1	1	-	3 Market V	alue-based All	ocation						
Refueling Station L.HZ													
Allocation ratio of total energy	and emission	burdens											
Energy-based allocation													
Feedstock	NG	Coal	Biomass	Pet Coke									
	100.0%	60.0%	100.0%	100.0%									

UC RIVERSITY OF CALIFORNIA

Baseline locomotive activity data

UC RIVERSITY OF CALIFORNIA

Legend

GPS traces from the locomotive activity data

Public Health Impacts and Improvements

December 16th 2022

Community Inspired Solutions

Grace Kaufman Project Manager Valley Vision

What is Diesel Exhaust?

Diesel exhaust is made up of Particulate Matter (PM) and various gases. Diesel is a complex mixture and includes over 40 substances that are listed by the US EPA as hazardous air pollutants

Chemical reactions in the atmosphere combine with emitted gases in diesel exhaust, resulting in the formation of harmful ozone that impacts human and wildlife health

Impact to the surrounding community

The Impact

The potential market for hydrogen locomotives in California includes more than 260 switcher locomotives. Sierra Northern Railway wants to convert their entire fleet to zero-emission hydrogen

Immediate improvement of regional air quality

> Reduction of greenhouse gas emissions, noise, and odor

Long term reduction of ozone levels

Tank Vou.

Grace Kaufman Grace.Kaufman@ValleyVision.org

Audience Q/A

Bart Sowa R&D Manager, GTI Energy BSowa@gti.energy

Michael Faust Sierra Northern Railway Project Consultant & President, Velocity Strategies mfaust@mefcllc.com

> **Grace Kaufman** Project Manager, Valley Vision Grace.Kaufman@ValleyVision.org

ALL MATERALS presented in this document are proprietary.

LEGAL NOTICE

This document was prepared as a result of work sponsored by the Gas Technology Institute and the California Energy Commission. It does not necessarily represent the views of GTI, the Energy Commission, nor their employees, or the State of California. Neither GTI, the Commission, the State of California, nor GTI or the Commission's employees, contractors, or subcontractor makes any warranty, express or implied, or assumes any legal liability for the information in this document; nor does any party represent that the use of this information will not infringer upon privately owned rights. This document has not been approved or disapproved by the Commission, nor has the Commission passed upon the accuracy of the information in this document.

© 2022 Sierra Northern Railway. All Rights Reserved.

